手机大战正酣 AI成为手机芯片决胜点

Estimated read time 0 views

你知道AI手机吗?

相信对于大多数普通用户而言,“AI手机”依然活在概念当中,即便在距离手机厂商第一次喊出“AI手机”已经过去了7年时间的今天,“AI”都没能成为手机市场的主要驱动力。

相较之下,即便问世稍晚的“折叠屏”,似乎都更有用户认知度,并且也确实撑起了安卓手机高端市场,今年出现的“三折叠手机”更是成为了全网热点。那么,这个被国际一线科技大厂竞相追逐,把英伟达和微软两家科技巨头市值推上3万亿美元的新技术,为何在手机上就不灵了?

归根结底,还是在于“AI手机”本身,与AI PC一样,它并没有带来肉眼上可以感知的形态变化,AI的提升,更多来自功能层面,而这波AI浪潮的底层驱动力,则是机身内那颗小小的“芯片”。

7年不痛不痒,AI体验“太弱了”

回想智能手机第一次与AI的结合,最早可以追溯到2017年9月,当月,手机圈共有两条重磅新闻,首先是9月2日华为推出麒麟970芯片,这款芯片是全球首款内置独立NPU(神经网络单元)的智能手机AI计算平台。

另一款则是主导了苹果未来5年设计,改变手机正面屏幕形态的iPhone X,在所有人都集中于苹果终于在设计上进入“全面屏时代”并提出“刘海屏”作为未来设计方向的同时,却很少有人注意到,iPhone X机内搭载的A11芯片,同样增加了“AI能力”。

芯片内建的神经网络引擎(Neural Engine)由苹果自主设计,这是一个专为机器学习而开发的硬件单元。它采用双核设计,每秒运算次数最高可达6000亿次(0.6TFlops),主要负责处理机器学习任务,如面部识别、Animoji等。这个引擎能够接管CPU和GPU的任务,提高运算效率,减少能耗。

没错“NPU单元”、“AI算力”、“机器学习”这些自去年开始被所有科技厂商挂在嘴边的词汇,早在7年前,就已经落地在手机芯片当中。只不过,当时的NPU单元,更多地是为日常的功能提供加速计算,而不是处理重度负载的“AI任务”,比如拍摄中的场景识别、色彩优化、暗光场景下的人脸识别等等。

联发科技计算与人工智能技术事业群副总经理陆忠立博士向钛媒体APP介绍:“用户能够感知到AI能力的最典型场景就是手机在摄影时的各类功能,一方面是图像采集部分,另一方面则是视频显示部分,比如自动切换帧率模式以及对图片、视频的最终画面效果进行动态范围、智能降噪的优化,其中都已广泛应用了AI技术。”

但这些都是比较早期的AI应用,也就是所谓的“分析式AI”,它与大家今天所谈到的“生成式AI”有很大的不同,这些AI技术更多地只是在某一特定应用或场景中实现了体验层的升级而已,或者你也可以把它理解为对传统固定智能算法的“小升级”。

生成式AI,如何改变手机?

而现如今大家所谈论的“生成式AI”,核心是通过深度学习和大数据分析,使得机器能够创造出全新的内容,如文本、图像和音频。这种AI技术不仅能够模仿已有的数据模式,还能在此基础上进行创新,产生具有多样性和一定不可预测性的输出。

而且与传统的基于固定算法或者基于现有内容进行增强的AI功能相比,生成式AI的应用范围更加广泛,从自然语言处理到艺术创作,它都能提供高效的解决方案,从而极大地提升自动化水平和工作效率。

AI能力的变化,背后也有芯片算力提升的推动,早期的NPU单元和手机芯片的总体算力非常有限,如果用它们来运行生成式AI,可能生成一副图片就需要十几分钟,处理一段文本、理解一段语言,也需要几分钟的时间,因此根本不具备在终端中应用落地的可能性。

近两年火热的“AI芯片”,其最大的变化就是更加强调的是能够在AI方面拥有独当一面的能力,比如上月苹果随iPhone 16系列发布A18 Pro芯片,从最简单的算力层面来看,苹果A11芯片的神经网络引擎采用双核设计,每秒运算次数最高可达6000亿次(0.6TFlops),而A18 Pro芯片的神经引擎是16核,算力为35 TOPS(即每秒35万亿次操作)。

简单估算一下,A18 Pro的AI算力差不多是A11芯片的58倍。本月初联发科刚刚发布的天玑9400,同样也在AI能力上进行了增强,其搭载了联发科全新的第八代AI处理器NPU 890。

天玑9400在端侧长文本理解能力以及AI模型文本支持长度方面进一步提升,并且支持50Token/秒大模型运行速度,再加上对多模态AI模型的支持,使得手机能够拥有更多的AI应用场景。

举个现实生活应用的案例,现阶段智能手机的语音助手,当听到“我饿了”的描述时,它们只会机械地帮你打开外卖、地图或者搜索平台,这些都不能帮你解决“饥饿”的实际问题,而天玑9400所支持的智能体,则会通过询问你的喜好,学习你的生活习惯,直接为你寻找或者推荐附近的餐厅。

再比如,当你拍摄了一张数学题,传统的智能助手最多只能告诉你这是一道数学题,或者是通过联网搜索扔给你一个标准答案。而在天玑9400加持下的智能体,则能够实现本地的推理运算,像一个会做题的老师一样,为用户呈现出从解题思路到最终答案的完整过程。

端侧算力,成为手机芯片竞逐赛道

由此可见,更好用、更全能的AI,并不是不存在,而是过去只能通过云端算力或者工作站才能满足,像ChatGPT、kimi等,这类语音助手所具备内容创作能力、文字搜索归纳的效率,都远超大家想象,但它们的背后,都是由一个个服务器组成的算力中心。

未来“AI手机”的竞争,与其说是拼想法,倒不如说是拼芯片,对于终端厂商来说,部署庞大规模的云端算力很显然是一件“费力不讨好”的事情。一方面,高额的持续投入成本很难化解,站在消费者层面,很难接受作为出厂标配的“AI功能”,竟会是一个需要付费的增值服务。

另一方面,AI功能的全面云端化,也会带来因网络延迟、网络波动导致的“体验一致性差”,再加上AI功能“0差异”也很难成为刺激用户换新的手段,因此,AI功能的“端侧移植”可以说是势在必行。

这一趋势不光会出现在“AI手机”当中,隔壁的“AI PC”也很早就走上了相同的道路。钛媒体APP预测,未来几年,无论是苹果、联发科、高通亦或是其他手机芯片厂商,其芯片的迭代重点都会将“AI算力”纳入其中,同时也是通过算力层面或者说硬件层面的领先部署,来为应用层面的更多可能性提供支撑。

新一轮的手机芯片大战,将会围绕“AI”展开。